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These exact solutions correspond to time-dependent motions in parabolic basins. 
A characteristic feature is that the shoreline is not fixed. It is free to move and must 
be determined as part of the solution. In general, the motion is oscillatory and has the 
appropriate small-amplitude limit. For the case in which the parabolic basin reduces 
to a flat plane, there is a solution for a flood wave. These solutions provide a valuable 
test for numerical models of inundating storm tides. 

1. Introduction 
Exact solutions for nonlinear fluid motions with moving boundaries are quite rare. 

One classical example is the solution for the motion of a rotating, gravitating mass of 
fluid with an ellipsoidal bounding surface (Dirichlet 1860; Lamb 1945, $382). Another 
is the well-known solution for gravity wave motion such that the fluid particles follow 
closed circular orbits and the shape of the surface is trochoidal (Gerstner 1802; 
Rankine 1863; Lamb 1945, 0 251). More recent examples are the similarity solutions of 
Freeman (1972) and Sachdev (1980) for gravity wave motion in the hydraulic approxi- 
mation and the generalizations of the Dirichlet ellipsoid by Longuet-Higgins (1972, 
1976) to hyperbolic and parabolic boundaries. More closely akin to the solutions 
presented here are those of Carrier & Greenspan (1 958) for water waves on a sloping 
beach, because, for both families of solutions, the motion is governed by the shallow- 
water equations and the shoreline is the moving boundary. 

The solutions presented here complement the work of Ball (1964). His idea was first 
to make assumptions about the nature of the motion and then to solve for the basin 
in which that motion should be possible. That approach is also taken here, but, rather 
than using Lagrangian variables that are tied to the flow, the Eulerian equations are 
solved directly. The solutions that are obtained are similar to those sought by Ball, 
and, like his, require the shape of the basin to be parabolic. 

These solutions can best be described as nonlinear normal mode oscillations of 
water in a parabolic basin. In one case the water’ssurface remains planar as it oscillates, 
and in another the surface is an oscillating paraboloid. Another solution corresponds to 
a flood wave caused by a parabolic mound spreading across a frictionless plane. The 
most general case can be thought of as a nonlinear superposition of simpler motions, 

The only solutions considered here are those for which the water’s surface is planar 
or parabolic. These have the appropriate small-amplitude limit, corresponding to 
linear normal mode oscillations within fixed boundaries (Thacker 1977; Lamb 1945, 
$$210, 212). Attempts to find other solutions for which the surface could be described 
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by polynomials of higher than second degree led to overdetermined sets of equations. 
These attempts are not described here, but the conclusion t o  be made is that there is 
not a one-to-one correspondence between each of the infinite set of linear oscillations 
and a finite-amplitude counterpart. In fact, there may not be any polynomial solutions 
of degree higher than second. 

An interesting feature of these solutions is that no bore forms as the water flows up 
the sloping sides of the basin. This is in agreement with the conclusion of Carrier & 
Greenspan (1958) that whether or not a wave breaks as i t  runs up a beach depends 
upon its initial shape and velocity distribution. Whereas their analysis was based upon 
one-dimensional motion in a basin with linearly varying depth, the analysis presented 
here is for two-dimensional motion, including the effects of a Coriolis force, in a para- 
bolic basin. 

2. The general case 

equations, 
The motion of water in shallow basins is governed by the shallow-water wave 

au au au ah - +u- +v-  -fv+g- = 0, 
at ax ay ax 

av av av ah 
-+u-+v-++fu+g- = 0 
at ax ay @ 

and 
ah a a - + - [u(D+ h)] + - [v(D+h)] = 0. 
at ax ay (3) 

The first two describe the evolution of the components u and v of velocity corres- 
ponding to the orthogonal directions x and y. The Coriolis parameter, f, accounts for 
the earth's rotation, and g is the acceleration of gravity. Equation (3) is the continuity 
equation. The surface elevation, h, is positive if it is above the equilibrium level, 
whereas the depth function, D,  is positive below the equilibrium level. Thus, D + h is 
the total depth of the fluid. 

The instantaneous shoreline is determined by the condition, D + h = 0. The moving 
shoreline separates a region in which the total depth is positive from another region 
in which i t  is negative. It follows from equation (3) that the volume of-water within 
the region for which the total depth is positive remains constant in time as the shore- 
line moves about. 

The approach taken here is to assume that there are solutions for u and v of the form 

= = u ~ + u x x + u u y ,  v = vo+vxx+vuy, (4)) (6) 

where ug, u,, u,, vo, v,, vy are functions only of time. Then equations (1) and (2) require 
that the solution for h have the form 

where 
h = hO+~,~+huy+Bh,,x2+~~,,Y2+B(h~,+h,,)~y, (6) 

h,= -- -+uoux+vou,-fvo 1 , 
9 ' Y O  dt 

h,= -- -+uovx+vovu+fuo I ) 
9 """ dt 

(7) 
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+ U,U, + uuvy - fv, 

where hxY = hYx, and where h, is a function only oft. 

particular, assume that 
If equation (3) is to be satisfied, then D must be a polynomial similar to h. In 

D = D ,  ( I---- ; ;:)? 

so that the basin is an elliptical paraboloid. Inclusion of linear terms amounts to a 
shift at the co-ordinate origin, and a term proportional to xy corresponds to a rotation 
of the co-ordinate axes, so (13) is quite general. The equilibrium shoreline is deter- 
mined by the condition D = 0; it is an ellipse, 

Two special caaes will be considered. One is for 1 = L, where the basin is a parabola of 
revolution, and the other is 1 & L, where the basin is a canal with a parabolic cross- 
section. 

If the polynomials given by equations (4), (5), (6) and (13) are to satisfy equation 
(3), then the time-varying coefficients of the linearly independent terms must sepa- 
rately vanish. This requires that u,, u,, uy, v,, v,, vY and ho satisfy the following 
equations: 

dh,, + (393, + u,) h,, - 4 + 2uY h,, = 0,  
dt ( 'f) 
dh,, dt + 2(u, + v,) h,, + u, (h,, - z) + v, (hYY - q) = 0. 
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These six equations, plus the requirement that h,, = hut, i.e. 

determine the seven unknown functions of time. 
Equations (16)-(20) are second order and equations ( 15) and (21) are first order. 

Therefore, 12 initial conditions are needed. These correspond to the initial values of 
u,, u,, u,, v,, v,, v,, h,, h,, h,, h,,, h,,, and h,,, which fully define the initial fields 
u, v and h. 

In the following sections various cases will be considered, corresponding to parti- 
cular choices for initial values and for the ellipticity of the basin. 

3. Oscillations for which the surface remains planar 
Assume that u, = u, = v, = v, = 0, so that h,, = h,, = h,, = h,, = 0.  Then only 

three functions, u,, v, and h,, must be determined. Equations (1 8)-( 2 1 )  are identically 
satisfied, and equations ( 1  5)-( 17)  become 

and 

Note that equations (23) and (24) are linear and have constant coefficients, so uo 
end v, vary sinusoidally with frequency, w, satisfying the dispersion equation, 

If the basin is a parabola ofrevolution, 1 = L, then there are two basic solutions: 

and 

= -~w,sinw,t, v = 7w2cosw2t, \ 

J 
the constant, 7, determines the amplitude of the motion. 
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For equation (26), the shoreline consists of the points (2, y) satisfying 

(x -7  cos w1t)2+ (y + 7 sin w1ty = L2, 
and, for equations (27), 

(x - 3 c o s ~ , t ) ~  + (y - 7 sin w2t)2 = L2. 

In either case the moving shoreline is a circle in the x, y plane, and the motion is such 
that the centre of the circle orbits the centre of the basin. For the lower-frequency 
mode, the orbit is counterclockwise and, for the higher-frequency mode, clockwise. 
In both cases, the surface remains planar as the water oscillates. Note that if 7 > L, 
then the motion is such that the bottom of the basin remains dry and centrifugal 
force holds the water to the sloping sides of the basin. 

Other solutions can be obtained by superposing these two solutions. For example, 

u = -~(w1sinwlt+w2sinw2t), 

v = - 7(w1 cos wlt - w2 cos w2 t), 

Y 7 h = 23 - - (cos wlt  + cos w2t) + - (sin w,t -sin w2t) - - [ 1 + cos (wl + w2)t] Do(s L L  L L 

In this case the nonlinearity results in a term with frequency given by the sum of the 
two basic frequencies. The boundary is again a circle given by 

(31) [x- 3 (cosw,t + cos w2t)]2+ [y + 7 (sin w1 -sin w2t)I2 = L2. 

In the limit, (4 f )2 < 2gDo/L2, the co-ordinates of the centre of the circle are 

x = 27 cos Tst cos ift, y = - 27 cos Gt sin 4 ft, (32) 

where 3 = #(wl + w2) A (2gDo)t/L. Thus the centre oscillates along a line passing 
through the centre of the basin which precesses at the angular velocity of the rotating 
basin. The motion is like that of a Foucault pendulum. Again, the surface remains 
planar as it oscillates, and for large 7 the water runs far up the sides of the basin. 

L, so that the basin is a canal. In this case there is a solution, Now suppose that 1 

I u = -3wsinwt, v = -7fcoswt, 

The shorelines are 
x=rcoswt+L.  (34) 

The water sloshes back and forth across the canal and the flow oscillates along the canal. 
Again, the surface is a tilting plane. 

Solutions can also be found for basins with elliptical cross-sections. For example, if 
rotation is neglected so that f = 0,  then there are two modes that correspond to motions 
along the axes of the ellipse: 

I u = -r]wlsinw,t, 2, = 0, 



504 W .  C. Thacker 

and 

1 u = 0, v = -yw,sinw,t, 

In each case the surface remains planar and the boundary remains elliptical as the 
water sloshes up and down the sides of the basin. Solutions for f + 0 can also be found, 
but they will not be presented here. 

The shallow water equations, (1)-(3), are based on the hydrostatic assumption that 
vertical accelerations are negligible compared to g. This restricts the validity of these 
solutions by demanding that 7 < L2/2Do. 

4. Oscillations for which the surface is curved 
Now assume that uo = vo = 0. This restricts the motion to convergence toward, 

divergence from, and rotation about the centre of the basin. In this case h, = h, = 0, 
and the five unknown functions, ux, u,, v,, v, and h,, are determined by equations 
(15) and (18)-(21). 

In particular, suppose that the basin is circular, 1 = L, and that u, = v,, and 
u Y = -v,. This reduces the number of unknown functions to three, and they are 
determined by the following equations: 

~ ~ + ( ~ + f a ) u x + 6 u x - + 4 u ~  89Do dux = 0, 
at 

dt 

(37) 

Equations (37)-( 39) have simple, exact solutions, 

and 

where 

w A sin wt 
u, = - 

2 I-Acoswt’ 

The initial value of v, is vxo and the initial value of ho is 7; u, is initially zero. The 
constant A depends on the values of v,,, and 7. 

Since h, = h, = 0, h,, = h,, and h,, = - hyz, the surface is a parabola of revolution, 

h = h o + ~ h , , ( ~ 2 + y 2 ) ,  (44) 
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where 

The shoreline is a circle with radius 

Since the volume remains constant in time, 

so another expression for the radius of the circular shoreline is 

The radius varies inversely with the square root of the total depth at the centre of the 
basin. When the surface is convex and the central elevation is above the equilibrium 
level, the shoreline contracts to a lower level, and, when the surface is concave with the 
central elevation below the equilibrium level, the shoreline expands to a higher level. 
The radius goes to zero as the central elevation goes to infinity, and it becomes 
arbitrarily large as the shape of the surface approaches the shape of the basin. 

Equations (45), (as), and (48) can be combined to provide an equation relating A 
to vxo and 7, [ (1 + 5) + fgo (1 + 9) / (1 + s. = 1-A. 1+A 

(49) 

Because A is always less than unity, the solutions given by (40)-(43) do not diverge. 
With the initial condition, 2vx0/f = 7/Do, equation (49) yields 

With A given by (50) and w given by (43), the complete solution for the motion is: 

I 1 
1 -A coswt 

U =  [&oxA sin wt -#fy( ( l -  A2)t+ A cosot - l)], 

In the small-amplitude limit the solution has the correct limit (Thacker 1977), 

r 
26 = - (wx sin wt - fy cos wt), 

200 

7 v = -(fx cos wt + wy sin wt) ,  
2 0 0  

h = r  ( 1- 2(x; y2)) cos wt.  
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It is also easy to imagine a solution €or which the water converges along the x axis 
while it diverges along the y axis and vice versa. This requires that f = 0 and uy = - v,, 
SO that hxu + hyx = 0. In this case there are four unknown functions, u,, v,, v,, and h,, 
which are governed by the four equations 

(53) d2u, - 6gDo u, + 5u, - dux + 3u: - 2v, dv, - +v, [ - & + u : - v : - q  dux = 0,  at2 +L2 at 

d2v, 6gD, vy  + 5v, dv -$ + 3v;- 2v,- dv, + u, + v;- v:- 3g] = 0, (54) dt 
-+- at2 L2 

dv, -+(u,+v,)v, = 0,  
dt (55)  

and 

~ + ( u , + v , ) ( h o + D o )  dt = 0. (56) 

If u, = vy,  then (53)  and (54) are redundant and these four equations reduce to the 
three for the previous case with f = 0. However, there should also be a solution for 
which u, and vy have opposite signs. 

Now suppose that the basin is a canal, 1 % L. There should be a solution with the flow 
alternately converging toward and diverging from the centre ofthe canal. In this case, 
uy = vu = 0, and the three unknown functions, u,, v, and h,, are determined by the 
three equations 

d2u, dtz + (3+ f 2) u, + SU,- dux + 3u:- 2fu,v, = 0,  
at 

%+u,(v,+f) dt = 0 

and 

%+ux(h,,+Do) at = 0. 

(57) 

Equations (57)-(59) are similar to (37)-(39) when f = 0. However, there seem to 
be no closed-form solutions for these equations. Numerical solutions indicate that the 
frequency of the oscillations depends on the amplitude of the motion. 

5. A parabolic flood wave 
If Do = 0, then equations (37)-(39) govern the motion of a parabolic mound of 

water spreading over a frictionless horizontal surface. So long asf + 0, equations (51), 
with w = f, are the solutions for u, v ,  and h. The flow is oscillatory, spreading outward 
until the Coriolis force turns it back and it returns to the initial state. 

When the Coriolis force is absent, equations (51)  no longer apply. In this case the 
solution is 

h=v[---  T 2  x2+y2( t  - T2 )'I,( 
t2+T2 R; 2 + T 2  

which corresponds to the initial conditions u = v = 0 and h = 7 ( 1  - (x2+ y2)lRt) .  
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Thus 7 is the initial height of the centre of the parabolic mound, and R, is the initial 
radius of the mound. At time t = T ,  the central height is 47. An analysis similar to  that 
leading t o  equation (49) provides an equation 

(61) RO - = (297)k 
T 

The radius of the spreading mound is 

and the velocity of the boundary is 

(63) 

For large times, t B T ,  the velocity of the edge is (2gy)t. 
When Do < 0,  so that  the basin is inverted and the flow is a flood wave spreading 

down a hill, equations (51) still apply so long as u2 = f 2  + 8gD,/L2 > 0. If the Coriolis 
force is large enough, a parabolic mound of water spreading down the hill should 
turn and climb to its initial position. If,f2 = - 8gD,/L2, equations (60)  apply and the 
edge should reach a terminal velocity as the parabolic mound spreads down the hill. 
I f f  < - 8gD,/L2, then i t  is reasonable to  expect that  the downhill flow continues 
indefinitely to  accelerate. 

6. Concluding re marks 
I n  addition to  the several cases for which complete solutions for exact nonlinear 

motion have been given, others exist which correspond to  different initial conditions. 
In  the general case, the motion is governed by seven coupled, nonlinear, ordinary 
differential equations, (15)-( 21). These equations can be integrated numerically 
without difficulty to  provide accurate solutions for arbitrary initial conditions. 

On the other hand, numerical integration of the partial differential equations 
(1)-(7) is much more difficult. For that reason, these exact solutions are particularly 
valuable. They provide a standard against which it is possible to  compare the compu- 
tations of numerical models. For example, storm tides are shallow umter flows having 
a moving shoreline, and numerical models are used to predict the extent of the 
inundation. If such models are unable to simulate these solutions, they are unlikely 
to provide an accurate storm surge forecast. 
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